Smoothed Analysis of the Minimum-Mean Cycle Canceling Algorithm and the Network Simplex Algorithm
نویسندگان
چکیده
The minimum-cost flow (MCF) problem is a fundamental optimization problem with many applications and seems to be well understood. Over the last half century many algorithms have been developed to solve the MCF problem and these algorithms have varying worst-case bounds on their running time. However, these worst-case bounds are not always a good indication of the algorithms’ performance in practice. The Network Simplex (NS) algorithm needs an exponential number of iterations for some instances, but it is considered the best algorithm in practice and performs best in experimental studies. On the other hand, the Minimum-Mean Cycle Canceling (MMCC) algorithm is strongly polynomial, but performs badly in experimental studies. To explain these differences in performance in practice we apply the framework of smoothed analysis. We show an upper bound of O(mn2 log(n) log(φ)) for the number of iterations of the MMCC algorithm. Here n is the number of nodes, m is the number of edges, and φ is a parameter limiting the degree to which the edge costs are perturbed. We also show a lower bound of Ω(m log(φ)) for the number of iterations of the MMCC algorithm, which can be strengthened to Ω(mn) when φ = Θ(n2). For the number of iterations of the NS algorithm we show a smoothed lower bound of Ω(m ·min{n, φ} · φ).
منابع مشابه
An Efficient Extension of Network Simplex Algorithm
In this paper, an efficient extension of network simplex algorithm is presented. In static scheduling problem, where there is no change in situation, the challenge is that the large problems can be solved in a short time. In this paper, the Static Scheduling problem of Automated Guided Vehicles in container terminal is solved by Network Simplex Algorithm (NSA) and NSA+, which extended the stand...
متن کاملOptimizing the Static and Dynamic Scheduling problem of Automated Guided Vehicles in Container Terminals
The Minimum Cost Flow (MCF) problem is a well-known problem in the area of network optimisation. To tackle this problem, Network Simplex Algorithm (NSA) is the fastest solution method. NSA has three extensions, namely Network Simplex plus Algorithm (NSA+), Dynamic Network Simplex Algorithm (DNSA) and Dynamic Network Simplex plus Algorithm (DNSA+). The objectives of the research reported in this...
متن کاملA new network simplex algorithm to reduce consecutive degenerate pivots and prevent stalling
It is well known that in operations research, degeneracy can cause a cycle in a network simplex algorithm which can be prevented by maintaining strong feasible bases in each pivot. Also, in a network consists of n arcs and m nodes, not considering any new conditions on the entering variable, the upper bound of consecutive degenerate pivots is equal $left( begin{array}{c} n...
متن کاملScheduling in Container Terminals using Network Simplex Algorithm
In static scheduling problem, where there is no change in situation, the challenge is that the large problems can be solved in a short time. In this paper, the Static Scheduling problem of Automated Guided Vehicles in container terminal is solved by the Network Simplex Algorithm (NSA). The algorithm is based on graph model and their performances are at least 100 times faster than traditional si...
متن کاملA polynomial cycle canceling algorithm for submodular flows
Submodular ow problems, introduced by Edmonds and Giles 2], generalize network ow problems. Many algorithms for solving network ow problems have been generalized to submodular ow problems (cf. references in Fujishige 4]), e.g. the cycle canceling method of Klein 9]. For network ow problems, the choice of minimum-mean cycles in Goldberg and Tarjan 6], and the choice of minimum-ratio cycles in Wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015